
Table of Contents

1 MinION technology progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 M13 MinION Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Establishing a read mapping strategy for MinION reads . . . . . . . . . . . . . . . . . . . .

3.1 Mapping program parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 E. coli contamination explains most unmapped 2D reads . . . . . . . . . . . . . . . . . . . .

5 Analyzing Read Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.0.1 Most mapped 2D reads span the full length of the M13 genome. . . . . . .

6 Learning the MinION error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1 Adenosine to thymine and thymine to adenosine substitution errors are rare in Min-

ION reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Read alignment identity was increased by realigning reads with a trained model . . . . . . .

8 Errors in mappable reads are not clearly correlated with read length . . . . . . . . . . . . .

9 Insertion, deletion and substitution errors correlate in 2D reads . . . . . . . . . . . . . . . .

10 Pipeline validation using E. coli data released by Quick et al.7 . . . . . . . . . . . . . . . .

11 Assessing MinION read coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.1 Homopolymer containing k-mers are under-represented in MinION reads . . . . . . .

12 Single Nucleotide Variant Calling with MinIONTM reads as a demonstration of alignment

accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1 Approach to SNV detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2 MinIONTM reads can call SNVs with high recall and precision. . . . . . . . . . . . .

13 High Molecular Weight Sequence Scaffolding across tandemly-duplicated CT47 repeat clus-

ter using MinION reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 CT47 repeat copy number estimates by sheared BAC sequencing . . . . . . . . . . . . . . .

15 Pulse-field gel electrophoresis validation of RP11-482A22 insert length . . . . . . . . . . . .



1 MinION technology progression

Over the six-month period of MAP to date, there have been three MinION chemistry versions and numer-

ous base-calling algorithm updates that have resulted in improvements in device performance (Supplemental

Fig. 1). For example, at UCSC the average % identity (proportion of bases in a read aligned to a matching

base in the reference) observed was at 67% in June 2014 (R6.0 release), 70% in July 2014 (R7.0 release),

78% in October 2014 (R7.3 release) and 85% in November 2014 (R7.3, high quality reads software filter).
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Fig. 1. Progression of read identities with MinION versions since June 2014.



2 M13 MinION Experiments

We generated three replicate experiments of M13mp18 bacteriophage DNA to establish the performance

characteristics of the MinION. The throughput statistics are shown in Supplementary Note Table 1. The

MinION read files were base called using Metrichor workflow R7.X 2D rev1.9. The basecaller (Metrichor)

classifies reads as pass and fail. For simplicity, and to avoid doubling the exposition, all the analysis reported

below, unless otherwise stated, was done using the pass reads from R7.3 chemistry.

Table 1. Number of functional channels and total amount of bases (in millions) generated as throughput from three

M13 replicate experiments using R7.3 chemistry. Total throughput was obtained by adding the number of bases in

the template and complement reads (from both pass and fail categories), and measures how many independent bases

were read directly from the device during a run.

Experiment Channels
pass fail

Total
Template Complement 2D Template Complement 2D

1 473 60 64 65 253 74 43 450

2 470 38 42 42 241 101 55 422

3 337 20 20 20 112 32 17 184

3 Establishing a read mapping strategy for MinION reads

To establish a methodology for mapping MinION reads we designed two pipelines that map the three

read classes (template, complement and 2D) from the sequencing experiments described above. The nanopore

pipeline (open source at https://github.com/mitenjain/nanopore) performs alignments, detailed anal-

yses, and variant calling on the sequence data. Its can be used to recapitulate all the analysis in this

manuscript. The marginAlign pipeline (open source at https://github.com/benedictpaten/marginAlign)

is a lightweight, easy to install tool that performs alignment and variant calling. In the present study, FASTQ

sequences were extracted from ONT base called files using custom scripts.

We experimented with four different initial read mapping programs: BLASR1 (PacBio’s long-read mapper

designed for mapping PacBio reads, commit abf9c38c55c2fb5f 40316885dce39f5308c9ff25 from https://

github.com/PacificBiosciences/blasr), BWA-MEM Release 0.7.112,3 (Heng Li’s popular adaptation of

the BWA mapper altered for handling long-reads), LAST Version 4904,5 (A fast, sensitive, adaptable and

popular pairwise alignment tool) and LASTZ Release 1.02.006 (a more traditional BLAST type seed-and-

extend program). Each mapping program was run with its default parameters, and, in addition, tuned



parameters that were determined either by experimentation, or by external expert advice, to perform well

with MinION reads (see Supplementary Note 3.1 below).

For each mapping experiment reads were mapped both to the M13 reference sequence (see Methods) and

the ONT lambda control DNA. The control DNA was a 3.8 kb segment of lambda phage DNA supplied by

Oxford Nanopore to be used in each experiment to measure baseline performance. For each mapping program,

a sizable fraction of reads could not be aligned to either reference when using the default parameters (data

not shown). Use of tuned parameters substantially improved the number of reads mapping to the reference

sequences. Supplementary Note Fig. 3 shows the overlaps in the number of reads mapping to either reference

for the different mapping programs using tuned parameters; we found that tuned LAST mapped the vast

majority of reads. In addition, very few reads (e.g. 2 2D reads) mapped by the other programs using tuned

parameters are not also mapped by tuned LAST.

To establish if the mappers produced substantial numbers of false positive mappings the reference se-

quences were reversed but not complemented and the reads mapped to these reversed sequences. The rationale

for this experiment being that in the resulting reversed sequences the base composition in terms of GC con-

tent and reversible Markov chain like properties are preserved, but the sequences are highly unlikely to be

similar to the reads. Supplementary Note Fig. 4 shows the results, with tuned LASTZ producing a number

of mappings (454) to the reversed reference, while LAST produced 106 and the other mappers produced no

or negligible numbers of such (mis)mappings.

Having determined that tuned LAST mapped almost all the reads mapped by the other mapping pro-

grams, and produced very few false positives by our reversal assessment, in subsequent figures we present the

results for tuned LAST, unless noted. During development we also ran the other mapping algorithms with

both tuned and untuned parameters for all the other assessments and saw similar results to those presented.
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Fig. 2. Full Length (48kb) Lambda DNA Nanopore Data. (a) Molecular events for translocation of a single
48kb Lambda dsDNA molecule through the nanopore sequencer. DNA length and conformation are simplified
for purposes of illustration. i - Open channel. ii - dsDNA with ligated loading (blue and brown) and hairpin
adaptors (red) captured by the nanopore with the aid of a membrane anchor and an applied voltage across
the membrane. iii -Translocation of the 5′ end of the loading adaptor through the nanopore under control of
a molecular motor and driven by the applied potential across the membrane. DNA translocation through the
nanopore starts. iv - Translocation of the template strand of DNA (gold). v - Translocation of the hairpin
adaptor (red). vi - Translocation of the complement strand (blue). vii-Translocation of the 3′ portion of
the loading adaptor. viii - Return to open channel nanopore. (b) Raw current trace for the entire passage
of DNA construct through the nanopore (approximately 2789 seconds). Regions of the ionic current trace
corresponding to steps i-viii are labeled. (c) Expanded 1 second time scale of raw current traces for DNA
capture and translocation of 5′ loading adaptors (i-iii); template strand (iv); hairpin adaptor (v); complement
strand (vi); 3′ loading adaptor, and return to open channel (vii-viii). Each adaptor generates a unique signal
used for position reference in base determination.
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Fig. 3. Venn diagram representing read mappability for MinION reads across three replicate M13 experi-
ments using R7.3 chemistry. Mappability represents the proportion of reads that can be aligned to either
the M13 or phage lambda DNA using the tuned parameters for each mapper. In our analysis, 2D reads have
the highest mappability, with 99% of reads being mappable, followed by complement and template reads
at 98% and 95% of their respective read proportions being mappable. Among the four aligners used, LAST
and LASTZ performed the best for M13, with LAST capturing the most proportion of mappable reads on
its own.
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Fig. 4. Venn diagram representing read mappability to a reversed reference for MinION reads across three
replicate M13 experiments using R7.3 chemistry. Results are using the tuned parameters. Since the reference
was reversed, effectively no reads should map.

3.1 Mapping program parameters

In the figures and tables presented each mapper was run both with its default parameters and with

the parameters described below, which are denoted ‘tuned’. The parameters we used for tuning any of the

mappers came mostly from recommendations from either Oxford Nanopore, fellow participants from MinION

Access Program (MAP), and parameters tuned in house. The parameters we used for the tuned versions of

each mapper are shown in Supplementary Note Table 2.

Table 2. Parameters used for different mappers and their sources.

Program Parameters Source/Recommendation

BLASR -sdpTupleSize 8 -bestn 1 -m 0 MAP participants, tweaking at UCSC

BWA -x pacbio Heng Li for long reads

BWA -x ont2d Heng Li for MinIONTM long reads

LAST -s 2 -T 0 -Q 0 -r 1 -a 1 -b 1 -q 1 Quick et al 7, MAP participants

LASTZ –hspthresh=1800 –gap=100,100 Oxford Nanopore

4 E. coli contamination explains most unmapped 2D reads

In order to characterize the small minority of unmapped reads we used BLAST 2.2.29 to align the

unmapped reads to the NCBI NT database. The NT database contains entries from all of the traditional



divisions of GenBank, EMBL and DDBJ8,9. The majority of unmapped 2D reads had BLAST hits (See Fig.

2 in the main text and Supplementary Note Tables 3, 4 and 5), most representing a low level of Escherichia

coli contamination. For the unmapped template and complement reads there were very few BLAST hits, but

those that did map also mostly mapped to Escherichia coli family members.



Table 3: Table of BLAST hits for 2D reads unmapped by any map-

per.

2D Unmapped Reads BLAST Hits

Sequence Name Counts

Escherichia coli KLY, complete genome 173

Escherichia coli B7A, complete genome 25

Escherichia coli O157:H7 str. EDL933, complete genome 11

Escherichia coli strain ST540, complete genome 7

Escherichia coli C321.deltaA, complete sequence 5

Escherichia coli UMNK88, complete genome 4

Escherichia coli str. K-12 substr. MC4100 complete genome 4

Escherichia coli str. K-12 substr. MG1655, complete genome 2

Escherichia coli LY180, complete genome 2

Escherichia coli plasmid pIS04 68, strain ISO4, complete sequence 2

Escherichia coli HS, complete genome 2

Escherichia coli P12b, complete genome 2

Escherichia coli E24377A, complete genome 2

Escherichia coli BL21(DE3), complete genome 2

Adenovirus type 2, complete genome 2

Human adenovirus C strain human/USA/Pitts 00109/1992/2[P2H2F2], complete genome 2

E. coli; the region from 81.5 to 84.5 minutes 2

Escherichia coli plasmid pH1038-142, complete sequence 1

Uncultured bacterium clone nbw890d10c1 16S ribosomal RNA gene, partial sequence 1

Homo sapiens chromosome 15, clone RP11-97H17, complete sequence 1

Escherichia coli SE15 DNA, complete genome 1

Homo sapiens 3 BAC RP11-208P4 (Roswell Park Cancer Institute Human BAC Library)

complete sequence

1

Escherichia coli plasmid pH2291-144, complete sequence 1

Human alphoid repetitive DNA, subclone pHS53 1

Escherichia coli O145:H28 str. RM12581, complete genome 1

Escherichia coli DH1 (ME8569) DNA, complete genome 1



Homo sapiens 12 BAC RP11-478B9 (Roswell Park Cancer Institute Human BAC Library)

complete sequence

1

Insertion sequence IS3 (from E.coli) inversion termini 1

Homo sapiens chromosome 18, clone RP11-210K20, complete sequence 1

Escherichia coli ABU 83972, complete genome 1

Homo sapiens 3-hydroxyisobutyryl-CoA hydrolase (HIBCH), RefSeqGene on chromosome 2 1

Escherichia coli O104:H4 str. 2009EL-2071 plasmid pAA-09EL71, complete sequence 1

Escherichia coli 042 complete genome 1

Escherichia coli strain ST2747, complete genome 1

Homo sapiens BAC clone CH17-417G10 from chromosome 1, complete sequence 1

Escherichia coli ATCC 8739, complete genome 1

Escherichia coli ETEC H10407, complete genome 1

Lactobacillus helveticus H9, complete genome 1

Salmonella enterica subsp. enterica serovar Typhimurium plasmid R64 DNA, complete se-

quence

1

Uncultured bacterium clone nck212c03c1 16S ribosomal RNA gene, partial sequence 1

Escherichia coli O157:H7 str. SS17, complete genome 1

Vibrio sp. 04Ya090 plasmid pAQU2 DNA, complete sequence 1

Shigella sonnei 53G main chromosome, complete genome 1

Achromobacter xylosoxidans A8, complete genome 1

Shigella boydii CDC 3083-94 plasmid pBS512 211, complete sequence 1

Homo sapiens 12 BAC RP11-693J15 (Roswell Park Cancer Institute Human BAC Library)

complete sequence

1

Escherichia coli B7A plasmid pEB4, complete sequence 1

Shigella boydii CDC 3083-94, complete genome 1

Homo sapiens chromosome 15, clone RP11-483O19, complete sequence 1



Table 4: Table of BLAST hits for Complement reads unmapped by

any mapper.

Complement Unmapped Reads BLAST Hits

Sequence Name Counts

Escherichia coli KLY, complete genome 15

Escherichia coli O157:H7 str. EDL933, complete genome 6

Escherichia coli C321.deltaA, complete sequence 2

Escherichia coli strain ST2747, complete genome 2

Escherichia coli B7A, complete genome 2

Escherichia coli 042 complete genome 1

Escherichia coli Trp repressor binding protein (wrbA) gene, complete cds 1

Escherichia coli W, complete genome 1

Escherichia coli 1540 plasmid pIP1206 complete genome 1

Escherichia coli O157:H7 str. EDL933 plasmid, complete sequence 1

Human adenovirus C strain DD28, complete genome 1

Escherichia coli strain D183 beta-lactamase TEM-1-like gene, partial sequence 1

Shigella dysenteriae strain 225-75 RNA polymerase subunit sigma-38-like (rpoS) gene, par-

tial sequence

1

Enterobacter asburiae L1, complete genome 1



Table 5: Table of BLAST hits for Template reads unmapped by

any mapper.

Template Unmapped Reads BLAST Hits

Sequence Name Counts

Escherichia coli KLY, complete genome 14

Escherichia coli B7A, complete genome 5

Escherichia coli O157:H7 str. EDL933, complete genome 2

Escherichia coli gene for hypothetical protein, partial cds, clone: pYU38 1

Shigella flexneri 2a str. 301, complete genome 1

Escherichia coli APEC O78, complete genome 1

Escherichia coli C321.deltaA, complete sequence 1

Escherichia coli W, complete genome 1

Enterobacteriaceae bacterium strain FGI 57, complete genome 1

Acidilobus saccharovorans 345-15, complete genome 1

Burkholderia cenocepacia MC0-3 chromosome 1, complete sequence 1

Uncultured bacterium clone PL06G10 16S ribosomal RNA gene, partial sequence 1

Uncultured soil bacterium clone GO0VNXF07H12HG 16S ribosomal RNA gene, partial

sequence

1

Rattus norvegicus 8 BAC CH230-416D7 (Children’s Hospital Oakland Research Institute

Rat (BN/SsNHsd/MCW) BAC library) complete sequence

1

Shigella flexneri 5 str. 8401, complete genome 1

Shigella dysenteriae Sd197, complete genome 1

5 Analyzing Read Length

Read length distributions for mapped vs. unmapped reads across three replicate M13 experiments using

R7.3 chemistry for template, complement, and 2D reads are shown in Fig. 2(a-c).

5.0.1 Most mapped 2D reads span the full length of the M13 genome. We observed two distinct

peaks for 2D reads, one at about 7.2 kb, corresponding to full-length M13, and one at 3.8 kb, corresponding

to ONT lambda phage DNA control. The very small proportion of unmappable 2D reads (<0.2%) were

generally shorter than the mappable reads.



6 Learning the MinION error model

Counting the number of substitutions, insertions and deletions in alignments we found substantial dis-

agreement in the rates of these errors between different mapping programs and parameter variations (Fig.

3 A-B). A more principled way to estimate the true rates of these errors is to propose a model of the error

process and calculate maximum likelihood estimates of the parameters of the model.

The model we propose is a five state pair-HMM11 which has two sets of insertion/deletion states (Sup-

plementary Note Fig. 5), one set for modeling short insertions/deletions and one for modeling long inser-

tions/deletions.

The latter were included to account for large gaps at the beginning and ends of the alignments, i.e. to

convert a local alignment model into a global alignment, as described in Durbin et al.11. To train the model

we used a hybrid form of the Baum-Welch algorithm (a form of expectation-maximization) that, for speed,

works within an alignment band around a fixed guide alignment12 for each read, the guide alignments being

provided by a mapping program, and the band being constructed as described in Paten et al..12, using C code

adapted from the Cactus alignment program13. In contrast to learning an alignment model from sequences

related by evolution, no assumption of reversibility (and therefore symmetry) was made, and parameters for

each transition and emission were learnt independently.

For each possible combination of guide mapping program (tuned versions of BLASR, BWA-MEM, LAST

and LASTZ, see Supplementary Note 3.1), MinION run (of three replicates) and read type set (template,

complement and 2D) we trained the alignment model. For each training experiment we performed three

independent runs, in each case starting from a randomly parameterized model and running for 100 iterations.

Supplementary Note Fig. 6 shows the results for one training experiment, showing convergence of log-

likelihood for all three runs to essentially the same value. Supplementary Note Fig. 5 shows the resulting

transition parameters for each read type; for each read type we observe excellent agreement in parameter

estimates both between runs for the same training experiment, and between training experiments with

different MinION runs and different guide alignments, indicating that our parameter estimates are robust.

Fig. 3a-b shows, as a cross check, the calculation of insertion, deletion and substitution rates for 2D reads

from realignments computed (see below) from each guide alignment using the alignment and the trained

model. In each case, despite the starting guide alignments having very different estimates of these error rates

the realigned alignments give consistently close error rates for these parameters. Interestingly, these relatively

closely agree with the starting tuned BLASR alignments, indicating it was most closely parameterized to

our estimates of the maximum likelihood rates.
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Fig. 5. Structure for the Hidden Markov Model (HMM) used for EM, along with the estimated parameters for
transition probabilities for template, complement, 2D reads. For each transition in order the mean estimate
and standard error across all experiments for that read type are shown.
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Fig. 7. Representative insertion and deletion plot for one M13 experiment using R7.3 chemistry, and aligned
using LAST post-EM.

Recently, we performed alignments using the new BWA release (version 0.7.12) that includes the ont2d

mode for nanopore reads (commit 8211fbcb625bef6480d04fa196e7514cbb31eb84 from https://github.com/

lh3/bwa/). The rate of insertions, deletions, and substitutions for BWA (pacbio and ont2d modes) and EM-

based LAST are shown in Supplementary Note Table 6. The average % identity decreased from 85% for BWA

pacbio mode to 83% for BWA ont2d mode. However, the error rates for BWA ont2d are now closer (though

still a distance from) our MLE estimates. Using EM and our realignment strategy we observed convergence



between different starting alignments. We expect this also to be true if starting from a BWA alignment using

the new ont2d mode (Figure 3a-b).

Table 6. Error rates obtained using tuned BWA (pacbio and ont2d modes), and EM-based LAST.

Program Parameters
Rate (%)

Average % Identity
Insertions Deletions Substitutions

BWA -x pacbio 6.8 8.6 1.8 85

BWA -x ont2d 3.1 5.4 10.4 83

LAST EM 4.9 7.8 5.1 85

6.1 Adenosine to thymine and thymine to adenosine substitution errors are rare in MinION

reads

Fig. 3c and Supplementary Note Fig. 8 shows the trained estimates of the substitution parameters

of the model, for each of the read types. Surprisingly the proportion of adenosine to thymine errors was

estimated to be very low, and similarly, but slightly less strongly, the proportion of thymine to adenosine

errors was also estimated to be low. To check that these rather striking results were not training artifacts

we calculated estimates of the substitutions directly from alignments produced by the different mapping

programs (Supplementary Note Fig. 9), in each case seeing the same trend. To ascertain if the very low

substitution error rates were influencing the transition parameters during training (e.g. certain substitutions

being traded for higher rates of insertions/deletions, Supplementary Note Fig. 7), we tied the emission

parameters during training so that substitutions occurred at the same rate regardless of the bases involved,

and so that indel emissions were flat (the same for each base regardless of type). The resulting trained

HMMs had virtually the same transition parameters as the untied models (data not shown), suggesting that

the trained transition parameters were not biased by the asymmetries of the trained emission parameters.

Though more data on a diversity of different sequencing samples was needed to confirm these results, we

note that mapping results could probably be improved by taking into account these bias in substitution

errors when considering seed alignments (e.g. discounting seed matches with numerous adenosine to thymine

matches).
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across template, complement, and 2D reads across three M13 experiments using R7.3 chemistry. The top
panel illustrates the average maximum likelihood estimate for these substitutions, with the standard error
represented in the lower panel.
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Fig. 9. Substitution matrices representing for each of the four tuned aligners across three M13 experiments
using R7.3 chemistry. For all the aligners, thymine to adenosine and adenosine to thymine substitution rates
are low, indicating that the device rarely miscalls one as the other.

7 Read alignment identity was increased by realigning reads with a trained

model

We define the identity of a read alignment as the proportion of read bases aligned to reference bases

without mismatches. We realigned the reads using trained models to see if this altered the identity of the



read alignments. For each possible combination of guide mapping program (tuned versions of BLASR, BWA-

MEM, LAST and LASTZ, see Supplementary Note 3.1), MinION run (of three replicates) and read type

set (template, complement and 2D) we trained the alignment model and then realigned the reads using

the resulting model. We call such alignments trained realignments. To realign the reads we used the same

banding strategy around the guide alignment, and picked a single alignment using the AMAP objective

function14, which calculates an alignment that accounts for the posterior expectation of each match and

indel. As a control experiment to account for the effects of realigning the reads, we also realigned the reads

using the same guide alignment strategy and objective function, but using an untrained model, the default

HMM used by Cactus, which was parametrized for vertebrate sequences related by natural selection. We call

these alignments naive realignments.

Supplementary Note Fig. 10 and Fig. 2d-f show the resulting distribution of alignment identity, aggregated

across replicates for the LAST trained realignments. The trained LAST realignments, but not the naive

realignments, show a substantial boost in identity (see Fig. 2d-f) over the tuned LAST alignments. This was

evident for all other guide mappers (data not shown).



8 Errors in mappable reads are not clearly correlated with read length

We compared read lengths of mappable reads across all three read types to common alignment metrics

- mismatches, insertions, deletions, and identity (Supplementary Note Fig. 11 shows results for 2D reads,

other read types were similar). Though the patterns are complex, partly because of the two different reference

sequences (M13 and Lambda control DNA), there are no clear overall linear correlations between read length

and any given mutation frequency.
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Fig. 11. Alignment quality measurements for 2D reads across three M13 replicate experiments. Alignments
were obtained using trained LAST realignments.

9 Insertion, deletion and substitution errors correlate in 2D reads

We compared rates of insertion, deletion and mismatch against each other for all three replicates of M13

(Supplementary Note Fig. 12). For 2D reads, we found a correlation between the rate of mismatches and

indels, R2 = 0.735, and a suggestive correlation between the rates of insertions and deletions, R2 = 0.387.

Looking at the template and complement reads we did not find any such correlation (data not shown). One

plausible hypothesis to explain the apparent correlation was that error rates for 2D reads were dictated by



the ratio of the lengths of its constituent template and complement reads. E.g. if there was a full template

read but the complement read was short, much of the 2D read would be inferred only from the template read,

without the benefit of having a full second observation of the read sequence. We did not find a convincing

correlation between read identity for 2D reads and the number of segments in their respective template and

complement reads (data not shown). Using R7.3 chemistry with older versions of Metrichor (R7.3 2D Version

1.5), Quick et al. observed a correlation between read identity for 2D reads and the number of segments in

the template and complement reads7.

a bMismatches Per Aligned Base vs.
Indels Per Aligned Base

Indels Per Aligned Base

M
is

m
at

ch
es

 P
er

 A
lig

ne
d 

Ba
se

0.00

0.05

0.10

0.05 0.10 0.15 0.20 0.25 0.30 0.35

R^2 = 0.735

Insertions Per Aligned Base vs.
Deletions Per Aligned Base

Deletions Per Aligned Base

In
se

rti
on

s 
Pe

r A
lig

ne
d 

Ba
se

0.05

0.10

0.15

0.05 0.10 0.15

R^2 = 0.387

Fig. 12. Error profile analysis of 2D reads aligned using trained LAST realignments indicates a moderate
correlation between mismatches and indels per aligned base, and a weak correlation between insertions per
aligned base and deletions per aligned base.

10 Pipeline validation using E. coli data released by Quick et al.7

To assess if the analysis pipeline we designed would be suitable for larger, more complex genomes, we

analyzed E. coli data released by Quick et al. that was obtained using R7.3 chemistry and Metrichor R7.3

2D Version 1.5. The most recent Metrichor update was not available to Quick et al. at the time of their

data release. We analyzed full 2D reads, as defined by Quick et al., and observed an improvement in average

% identities with realignment. The results for this analysis are shown in Supplementary Note Table 7. The

improvement in identity with EM demonstrates that the results were not specific to M13. Also, the MLEs

for mismatches (0.0531 events/aligned base), insertions (0.0598 events/aligned base) and deletions (0.091



events/aligned base) were remarkably close to those found for the M13 data, suggesting that the errors were

largely invariant to the source genome.

Table 7. Analyzing previously released E. coli data7 with the UCSC analysis pipeline. Data obtained using R7.3

chemistry and MetrichorTM R7.3 2D Version 1.5.

Substrate
Average % identity

LAST Tuned LAST EM

E. coli Full 2D 80.1 81.8

M13 Full 2D 70.0 80.7

11 Assessing MinION read coverage

We measured sequencing depth, termed coverage, across the M13mp18 reference. The coverage for tem-

plate/complement/2D reads across three replicate experiments is shown in Supplementary Note Fig. 13a-c

respectively. For all three read types coverage was largely consistent across the genome, apart from at the

very ends of the genome (see below), and did not appear to fluctuate substantially based upon GC content

- though the short length and relatively narrow fluctuation in GC across the M13mp18 genome precludes a

thorough assessment of this issue.

Fitting a generalized extreme value distribution15 (Supplementary Note Fig. 13d-f) to the 2D read cover-

age we identified 192 sites (2.6%) across M13 genome as under-represented using non-parametric statistical

analysis. Briefly, we selected outliers based on positions where the observed coverage deviated beyond 2

standard deviations. We found the under-represented sites to be divisible into subsets. The first 49 and the

last 43 nucleotides of the M13 reference were under-represented; we hypothesize these under-represented sites

are the result of adaptor trimming by the base-calling software. A close examination of 5-mers overlapping

the remaining 100 positions (four preceding nucleotides along with the nucleotide at the position of interest)

revealed these sites to be rich in homopolymeric nucleotide runs (Supplementary Note Table 8).



Table 8. 5-mers observed at the 100 underrepresented positions in the M13 genome. These numbers do not consider

positions at the beginning and end of M13 which are likely to be under-represented as a result of adaptor trimming.

K-mer # Positions K-mer # Positions K-mer # Positions

AAAAA 13 CCTCT 1 GTCTA 1

AAAAC 1 CCTTT 1 GTTTT 2

AAAAG 1 CGCCC 1 TAAAA 2

AAAAT 1 CGTCA 1 TACAA 1

AAACA 1 CTGGT 1 TACAC 1

AAATT 1 CTTTC 1 TACAT 1

AAGTG 1 CTTTT 5 TAGAT 1

AATCG 1 GAGCC 1 TAGTG 2

ACTCT 1 GAGGA 1 TATAT 1

AGCCT 1 GCAAC 1 TGAAG 1

AGGCT 1 GCCAC 1 TGACC 1

AGTTA 1 GCCCT 2 TGCTA 1

ATTCA 1 GCCTT 1 TGTAC 1

ATTTG 1 GGGAT 1 TTATA 1

ATTTT 1 GGGGG 1 TTCAT 1

CAAAA 5 GGGTG 1 TTCGC 1

CAGCT 1 GGTAC 1 TTTCA 1

CCACC 2 GGTAT 1 TTTGA 1

CCCCA 1 GGTGA 1 TTTTA 2

CCCCC 1 GGTTA 1 TTTTT 13

CCCTA 1 GTAAC 1

11.1 Homopolymer containing k-mers are under-represented in MinION reads

Coverage drops at homopolymeric sites was not unexpected because nanopore sequencers do not read

individual bases, rather they measure a continuous change in current, with 5 bases within the pore at

any time. To resolve this into a sequence of individual nucleotides, the base calling algorithm integrates the

signal over 5-mer windows. To test whether any of the possible 1024 5-mers were under- or overrepresented we

evaluated relative enrichment patterns in the M13 sequence datasets. We employed a sliding window analysis

(spanning 5 bases with a slide of 1 base) to determine the frequency of all possible 5-mers in both forward and

reverse complement orientation within both datasets. Briefly, enrichment/depletion significance was tested



through simulation. 5-mers were drawn 5,000 times across 1,000 replicates from the distributions counted

from the data and then the Kolmogorov-Smirov test was used to compare these distributions, assigning a

Bonferroni-corrected p-value to each comparison (not shown). Consistent with the observed coverage drops,

the most under-represented 5-mers in the read set contain poly-dA or poly-dT, while the most enriched

5-mers are G/C rich and did not contain homopolymer repeats (Supplementary Note Table 9).

We also compared 5-mers spanning indels in alignments. For this experiment, indels were defined as any

5-mer which has an alignment gap of any size in the four internal positions. We found similar trends in these

5-mers as in the overall counts, with poly-dA and poly-dT 5-mers being under-represented in the read set.

The similarity of these two comparisons was not surprising given the interspersed and highly common nature

of 1-2 bp indels in these alignments (Supplementary Note Table 10).

In both comparisons, no systematic difference was seen between template, complement and 2D reads.

Individual comparisons have different ordering of enriched and depleted 5-mers, but similar trends are found

across each read type within each comparison.
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12 Single Nucleotide Variant Calling with MinIONTM reads as a

demonstration of alignment accuracy

An important use of current next generation sequencing is single nucleotide variant (SNV) discovery,

however the relatively high error rates of MinIONTM reads make this potentially challenging (see S. Fig.

14). To establish how useful MinIONTM reads are for simple SNV discovery in monoploid genomes we took

the M13mp18 reference sequence and randomly introduced substitutions at a frequency of 1, 5, 10 and 20%,

picking the alternate allele with equal probability for each possible alternate base. We call each altered

sequence a mutated reference sequence. For each read type, for each replicate of the M13mp18 experiment we

aligned the reads to each mutated reference sequence with a given mapper and ran an algorithm to call SNVs

with respect to the mutated reference sequence (see below). In addition to exploring simple SNV discovery

with MinIONTM reads, the “held out” known differences between the mutated reference sequence and the

DNA being sequenced can be used to assess read alignment accuracy, because correct alignments should

improve recovery of the introduced substitutions while avoiding issues of reference allele bias. Reference

allele bias being the tendency for consensus sequences derived from read alignments to resemble the reference

sequence to which they are aligned because of the alignment bias towards creating matches between identical

bases.

12.1 Approach to SNV detection

Let a sequence S = S1, . . . , Sm be a finite string over the alphabet of nucleotide characters π =

{A,C, T,G}, termed bases. Let X = {X1, . . . , Xn} be the set of read sequences, Y the given mutated

reference sequence, Z the true M13mp18 reference sequence, θ a read error model that can be used to cal-

culate P (X|Z, θ), ω a substitution model that can be used to calculate (Z|Y, ω), and φ a generator model

that can be used to calculate (Y |φ). Each of θ, ω and φ can be described as forms of branch transducer

model, which are a subtype of graphical model that receive input symbols (here individual bases) from an

input sequence and output symbols (again, here individual bases) to an output sequence conditional on the

input symbols16. Branch transducers can be composed together to form evolutionary HMMs, which give

HMM models for arbitrary phylogenies. Here ω is very simple, having a single parameter, α, corresponding

to substitution frequency:

MATCH

WAIT

ɑ

ENDEND SIGNALSTART

MISMATCH

1-ɑ



In the above representation of ω the WAIT state is a silent state that receives bases from the input

sequence until it receives the END-SIGNAL at which it transitions to the end state. For each input base it

chooses with probability α to emit the input base (MATCH state), else a different base (MISMATCH state).

The transducers φ and θ composed together, φ ◦ θ, are equivalent to the 5-state HMM described earlier, i.e.

P (X,Z|φ◦θ) = P (X|Z, θ)P (Z|φ). Composing the branch transducers together we get an evolutionary HMM

modeling the reads and reference sequences (where ε is the empty string):

Z

X1 Xn

Y

...

Θ Θ Θ

ω

 ε

ɸ

A simple way to define the variant calling problem is that of finding a member of

f(X,Y ) = arg max
Z′

= P (Z ′|Y, ω)P (Y |φ)
∏
i

P (Xi|Z ′, θ), (1)

a maximum likelihood (ML) prediction of the true reference sequence, Z, given the mutated reference se-

quence and the reads. Unfortunately this optimization, corresponding to the multiple sequence alignment

problem, is NP-hard17, though exact dynamic programming algorithms that are exponential in the cardi-

nality of X exist, and a number of principled heuristics have been proposed18.

Let ∼ represent a pairwise alignment of each read sequence to the mutated reference Y . We write Yi ∼ Xj
k

to indicate element i of the mutated reference sequence Y is aligned to element k of read sequence Xj . As

the alignment allows for only indels and matches, for each read sequence Xj , ∼ defines a strictly increasing

relationship between the indices of aligned bases in Y and Xj . A probability calculated using an HMM can

be conditioned on such an alignment by restricting the state space investigated to a subspace of the overall

space. Here we define this restriction as requiring the HMM to emit the sets of aligned bases in the order

defined by the sequences. While computing f is intractable, it is straightforward, given the simple definition



of ω, to compute a member of

f ′(X,Y,∼) = arg max
Z′

P (Z ′|Y,∼, ω)P (Y, φ)
∏
i

P (Xi|Z ′,∼, θ), (2)

a ML estimate of the true reference sequence conditional on a fixed alignment, because, it is easy to show,

this corresponds to calculating the ML base independently for each column i containing one or more aligned

read positions:

arg max
Z′

i

P (Z ′i|Yi, ω)P (Yi|ψ)
∏

Xj
k∼Yi

P (Xj
k|Z
′
i, θ), (3)

concatenating the resulting ML bases together in order to form Z ′.

To generate an alignment ∼ we used one of the mapping programs described earlier, or the composed

transducer φ ◦ ω ◦ θ (see below), which combines the five-state HMM error model described earlier with the

simple model for substitutions between Y and Z and the sequencing generating transducer φ. The parameters

for the error model were determined using the EM training described earlier, the substitution parameter for

ω was set by manual, empirical investigation.

A simple improvement over using the fixed alignment algorithm is to use the posterior match probabilities

between bases in the alignments to replace (3) with

arg max
Z′

i

P (Z ′i|Yi, ω)P (Yi|ψ)
∏
j

∑
k

P (Xj
k|Z
′
i, θ)P (Xj

k ∼ Yi|φ ◦ ω ◦ θ), (4)

where P (Xj
k ∼ Yi|φ ◦ ω ◦ θ) is the posterior probability that the element k of sequence Xj is aligned to

element i in sequence Y given the composed transducer φ ◦ ω ◦ θ. Note this is not the same as evaluating

f directly, but instead is equivalent to the column calculation in 3 marginalising over the probability of all

pairwise alignments between each read and the mutated reference sequence.

Instead of calculating 4 we can alternatively calculate the related posterior base calling probability that

the base at given index of Z is equal to a given base, and so obtain the likelihood of each alternate base

(bases not the same as the given mutated reference base) for our chosen parameters. We can then assess

the number of non-reference true positive and false positive predictions with a posterior probability greater

than or equal to a given value. We define a false positive for an index i and posterior probability p as a

base x not equal to either Yi or Zi and with posterior base calling probability ≥ p. Conversely, we define

a true positive to be when x is equal to Zi, not equal to Yi (because we are interested in sites that have

changed between the true and mutated reference), and the posterior base calling probability is ≥ p. Given



these definitions, summing over all columns, we use standard the information theoretic measures of precision,

recall and F-score to judge performance for a given posterior probability threshold.

12.2 MinIONTM reads can call SNVs with high recall and precision.

The described SNV calling algorithm has two steps: computing posterior alignment match probabilities

and then calculating posterior base calling probabilities. Starting with 2D reads aligned with tuned LAST

(as described earlier; for this task LAST was found to work slightly better than using BLASR (data not

shown)), to compute the posterior match probabilities we constructed a band around the guide alignment,

exactly as in the EM-training described earlier, and computed the forward-backward algorithm within the

band. The model φ◦ω ◦θ was composed by combining an EM trained HMM model (φ◦θ) on 2D reads using

tuned LAST as the guide alignment (as described earlier) with the substitution model ω, setting α = 0.8,

which was found to work well and which corresponds to a mismatch rate of 20%.

Supplementary Fig. 15 and Supplementary Table 11 shows the results. Note the numbers in the table

(and subsequent tables) are the avg. precision/recall/F-scores over all replicates, where for each replicate

the precision/recall/F-score value shown is for the optimal F-score for that replicate. In the figure (and

subsequent figures), the precision and recall value pairs which define the curves are the avg. over all replicates

as a function of the posterior base calling probability threshold.

In short, at a mutation frequency of 1% using all the data and choosing a posterior base calling threshold

that gives the optimal avg. F-score for each replicate we achieve, in this best case scenario, an avg. recall of

≥ 99% and precision of ≥ 99%. Reducing the coverage down to a more reasonable 60x we achieve a recall and

precision of 97%. Increasing the mutation frequency decreases the F-score progressively, presumably because

the alignment between reads and the mutated reference becomes even harder.

To demonstrate the methods and parameters we chose were reasonable we compared to a number of

parameter and algorithm variations.

In calculating the posterior match probabilities setting α = 0.6 (a mismatch rate of 40%) we see a decrease

in F-score for a 1% mutation frequency (avg. across all coverages), but a gain for 5% and greater mutation

frequencies (Supplementary Fig. 16 and Supplementary Table 12). This suggests, as might be expected, that

α should be set lower when the expected divergence between the reference and sample is greater. With

α = 0.6 we achieve an avg. precision and recall of 98% for a 5% mutation frequency.

For α = 1.0 (equivalent to not modeling mismatches) we see very significantly lower performance (Supple-

mentary Fig. 17 and Supplementary Table 13). We speculate the relatively large α values work well because

the trained model strongly prefers to avoid certain matches - e.g. adenosine to thymine, but such matches

should be made when aligning the reads to a mutated reference sequence rather than the true reference



sequence. The higher substitution rates therefore allows the model to overcome this bias, rather than giving

weight to likely alternative scenarios, e.g. the creation of additional indels to avoid these matches.

In calculating the posterior base calling probabilities switching θ from the EM trained model to a model

which treats all substitutions as having equal probability (and which is therefore equivalent to picking the

base with highest posterior match probability expectation) we find a very small decrease in performance

(Supplementary Fig. 18 and Supplementary Table 14), suggesting the trained substitution model performs

better than a naive strategy.

Switching from using posterior match probabilities to a fixed input alignment in the calculation of the

posterior base calling probability we find significantly lower performance (Supplementary Fig. 19 and Sup-

plementary Table 15). This is unsurprising given that the modal posterior match probability is less than

90% (Fig. 5(C)).

As might be expected, switching to using template or complement reads instead of 2D reads we find

substantially poorer performance (Supplementary Fig. 20-21 and Supplementary Tables 16-17), however,

this may be somewhat down to using an alignment model trained for 2D reads.
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Fig. 15. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using 2D reads starting with the tuned Last (run using
the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed using posterior match
probabilities to integrate over every possible read alignment to the mutated reference sequence, using the
initial guide alignment to band the calculations. Variant calling used a trained substitution matrix to calculate
the maximum likelihood base (see method description). Posterior match probabilities calculated using the
EM trained HMM model, accounting for substitution differences between the mutated reference and true
underlying reference, assuming 20% divergence. Variant calling results shown for a posterior base calling
probability threshold that gives the optimal F-score. Mutation frequency is the approximate proportion of
sites mutated in the reference to which reads where aligned, and for which variants were called. Coverage is
the total length of reads sampled divided by the length of the reference. ALL corresponds to using all the
reads for a given experiment. Results shown are across three replicate experiments, and, at each coverage
value, three different samplings of the reads. Raw results are available in the supplementary spread-sheet.
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Fig. 16. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using 2D reads starting with the tuned Last (run using
the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed using posterior match
probabilities to integrate over every possible read alignment to the mutated reference sequence, using the
initial guide alignment to band the calculations. Variant calling used a trained substitution matrix to calculate
the maximum likelihood base (see method description). Posterior match probabilities calculated using the
EM trained HMM model, accounting for substitution differences between the mutated reference and true
underlying reference, assuming 40% divergence. Variant calling results shown for a posterior base calling
probability threshold that gives the optimal F-score. Mutation frequency is the approximate proportion of
sites mutated in the reference to which reads where aligned, and for which variants were called. Coverage is
the total length of reads sampled divided by the length of the reference. ALL corresponds to using all the
reads for a given experiment. Results shown are across three replicate experiments, and, at each coverage
value, three different samplings of the reads. Raw results are available in the supplementary spread-sheet.
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Fig. 17. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using 2D reads starting with the tuned Last (run using
the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed using posterior match
probabilities to integrate over every possible read alignment to the mutated reference sequence, using the
initial guide alignment to band the calculations. Variant calling used a trained substitution matrix to calculate
the maximum likelihood base (see method description). Posterior match probabilities calculated using the
EM trained HMM model, without accounting for substitution differences between the given reference and
true underlying reference. Variant calling results shown for a posterior base calling probability threshold
that gives the optimal F-score. Mutation frequency is the approximate proportion of sites mutated in the
reference to which reads where aligned, and for which variants were called. Coverage is the total length of
reads sampled divided by the length of the reference. ALL corresponds to using all the reads for a given
experiment. Results shown are across three replicate experiments, and, at each coverage value, three different
samplings of the reads. Raw results are available in the supplementary spread-sheet.
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Fig. 18. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using 2D reads starting with the tuned Last (run using
the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed using posterior match
probabilities to integrate over every possible read alignment to the mutated reference sequence, using the
initial guide alignment to band the calculations. Variant calling corresponds to choosing the maximum-
frequency/expectation of a non-reference base. Posterior match probabilities calculated using the EM trained
HMM model, accounting for substitution differences between the mutated reference and true underlying
reference, assuming 20% divergence. Variant calling results shown for a posterior base calling probability
threshold that gives the optimal F-score. Mutation frequency is the approximate proportion of sites mutated
in the reference to which reads where aligned, and for which variants were called. Coverage is the total length
of reads sampled divided by the length of the reference. ALL corresponds to using all the reads for a given
experiment. Results shown are across three replicate experiments, and, at each coverage value, three different
samplings of the reads. Raw results are available in the supplementary spread-sheet.
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Fig. 19. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using 2D reads starting with the tuned Last (run using
the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed conditioned on the fixed
input alignment. Variant calling used a trained substitution matrix to calculate the maximum likelihood
base (see method description). Posterior match probabilities calculated using the EM trained HMM model,
accounting for substitution differences between the mutated reference and true underlying reference, assuming
20% divergence. Variant calling results shown for a posterior base calling probability threshold that gives
the optimal F-score. Mutation frequency is the approximate proportion of sites mutated in the reference to
which reads where aligned, and for which variants were called. Coverage is the total length of reads sampled
divided by the length of the reference. ALL corresponds to using all the reads for a given experiment. Results
shown are across three replicate experiments, and, at each coverage value, three different samplings of the
reads. Raw results are available in the supplementary spread-sheet.
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Fig. 20. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using complement reads starting with the tuned Last
(run using the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed using posterior
match probabilities to integrate over every possible read alignment to the mutated reference sequence, using
the initial guide alignment to band the calculations. Variant calling used a trained substitution matrix to
calculate the maximum likelihood base (see method description). Posterior match probabilities calculated
using the EM trained HMM model, accounting for substitution differences between the mutated reference and
true underlying reference, assuming 20% divergence. Variant calling results shown for a posterior base calling
probability threshold that gives the optimal F-score. Mutation frequency is the approximate proportion of
sites mutated in the reference to which reads where aligned, and for which variants were called. Coverage is
the total length of reads sampled divided by the length of the reference. ALL corresponds to using all the
reads for a given experiment. Results shown are across three replicate experiments, and, at each coverage
value, three different samplings of the reads. Raw results are available in the supplementary spread-sheet.
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Fig. 21. Precision/recall curves showing variant calling performance for four different mutation frequencies:
1, 5, 10 and 20 percent. Variant calling performed using template reads starting with the tuned Last (run
using the ‘-s 2 -T 0 -Q 0 -a 1’ flags) mapping algorithm. Variant calling was performed using posterior
match probabilities to integrate over every possible read alignment to the mutated reference sequence, using
the initial guide alignment to band the calculations. Variant calling corresponds to choosing the maximum-
frequency/expectation of a non-reference base. Posterior match probabilities calculated using the EM trained
HMM model, accounting for substitution differences between the mutated reference and true underlying
reference, assuming 20% divergence. Variant calling results shown for a posterior base calling probability
threshold that gives the optimal F-score. Mutation frequency is the approximate proportion of sites mutated
in the reference to which reads where aligned, and for which variants were called. Coverage is the total length
of reads sampled divided by the length of the reference. ALL corresponds to using all the reads for a given
experiment. Results shown are across three replicate experiments, and, at each coverage value, three different
samplings of the reads. Raw results are available in the supplementary spread-sheet.



13 High Molecular Weight Sequence Scaffolding across tandemly-duplicated

CT47 repeat cluster using MinION reads

High molecular weight BAC DNA (RP11-482A22) was isolated using standard methods for purification

of large constructs (QIAGEN Large-Construct Kit, cat 12462). To avoid DNA shearing for high-molecular

weight sequencing, we performed NotI-HF (NEB Cat. No. R3189S) restriction digest (expected to isolate the

insert from pBACe3.6 cloning vector, gi|4878025) followed by end repair using klenow- in the same mix. This

mixture underwent dA-tailing directly after being added with separately end-repaired ONT supplied control

DNA, and then proceeded for rest of the steps as the standard ONT recommended steps, mentioned above.

The device was operated using ONT’s MinKNOW software, according to the provided instructions. The

flowcells used were chemistry version R6.0 and R7.0. The read files were base called using ONT’s Metrichor

software, version 2D basecalling v1.2 and v1.3.1.

Long reads spanning the CT47-repeat cluster were identified using three sequence models19: a single

copy sequence directly upstream of the repeat array (6.6 kb, hg38 chrX:120865735 120872351), CT47-repeat

(4.8 kb, hg38 chrX:120932375-120937233), and a single copy sequence directly downstream from the repeat

array (2.7 kb, hg38 chrX:120986928-120989651). Nine reads were identified to contain both upstream and

downstream models with each supporting the estimate of eight CT47-repeat copies (see Supplementary Data

1 below). Reads were trimmed to the only present sequences involved in the repeat classification models

(Data available in ENA; primary accession number is PRJEB8230, and the secondary accession number

is ERP009289). Pecan software was used to generate multiple alignment of reads (Data available in ENA;

primary accession number is PRJEB8230, and the secondary accession number is ERP009289)12.



Rd	  No. Read	  ID Total	  Read	  
Size

HMM	  Model	  
Prediction Trim	  Start Trim	  End

Span	  through	  CT47-‐
Rpts	  (+Upstream	  and	  
Downstream	  HMM	  

Models)

HMM	  
Model	  

Prediction	  
Start

HMM	  
Model	  

Prediction	  
End

Trim	  Read	  
Start

Trim	  Read	  
End

HMM	  Model	  
Prediction	  Base	  
Span	  Trim	  Read

1 channel_278_read_20 38375 Upstream	   36 36208 36172 27 6611 5 5513 5509
1 channel_278_read_20 38375 Rpt1 36 36208 36172 1121 4859 5247 8569 3323
1 channel_278_read_20 38375 Rpt2 36 36208 36172 42 4859 8571 12650 4080
1 channel_278_read_20 38375 Rpt3 36 36208 36172 12 4858 12653 16678 4026
1 channel_278_read_20 38375 Rpt4 36 36208 36172 1 4819 16679 20779 4101
1 channel_278_read_20 38375 Rpt5 36 36208 36172 20 4857 20783 24875 4093
1 channel_278_read_20 38375 Rpt6 36 36208 36172 35 4635 24880 28864 3985
1 channel_278_read_20 38375 Rpt7 36 36208 36172 11 4815 28872 32989 4118
1 channel_278_read_20 38375 Rpt8 36 36208 36172 17 1164 32983 34017 1035
1 channel_278_read_20 38375 Downstream 36 36208 36172 1 2686 33901 36169 2269
2 channel_198_read_22 40110 Upstream	   21 37816 37795 28 6596 3 5740 5738
2 channel_198_read_22 40110 Rpt1 21 37816 37795 1044 4853 5547 8908 3362
2 channel_198_read_22 40110 Rpt2 21 37816 37795 17 4606 8913 13183 4271
2 channel_198_read_22 40110 Rpt3 21 37816 37795 42 4858 13218 17460 4243
2 channel_198_read_22 40110 Rpt4 21 37816 37795 1 4856 17461 21675 4215
2 channel_198_read_22 40110 Rpt5 21 37816 37795 9 4859 21677 25938 4262
2 channel_198_read_22 40110 Rpt6 21 37816 37795 1 4849 25941 30183 4243
2 channel_198_read_22 40110 Rpt7 21 37816 37795 3 4819 30185 34478 4294
2 channel_198_read_22 40110 Rpt8 21 37816 37795 24 1271 34488 35723 1236
2 channel_198_read_22 40110 Downstream 21 37816 37795 1 2703 35424 37793 2370
3 channel_227_read_5 39526 Upstream	   39 37293 37254 50 6611 5 5601 5597
3 channel_227_read_5 39526 Rpt1 39 37293 37254 949 4858 5334 8777 3444
3 channel_227_read_5 39526 Rpt2 39 37293 37254 6 4811 8780 12994 4215
3 channel_227_read_5 39526 Rpt3 39 37293 37254 5 4832 12998 17166 4169
3 channel_227_read_5 39526 Rpt4 39 37293 37254 1 4825 17167 21371 4205
3 channel_227_read_5 39526 Rpt5 39 37293 37254 1 4813 21375 25570 4196
3 channel_227_read_5 39526 Rpt6 39 37293 37254 13 4842 25572 29819 4248
3 channel_227_read_5 39526 Rpt7 39 37293 37254 5 4841 29816 33949 4134
3 channel_227_read_5 39526 Rpt8 39 37293 37254 4 1171 33950 35008 1059
3 channel_227_read_5 39526 Downstream 39 37293 37254 79 2723 34931 37254 2324
4 channel_277_read_0 39384 Upstream	   2260 39357 37097 32 6613 10 5621 5612
4 channel_277_read_0 39384 Rpt1 2260 39357 37097 1050 4848 5450 8806 3357
4 channel_277_read_0 39384 Rpt2 2260 39357 37097 19 4859 8807 12977 4171
4 channel_277_read_0 39384 Rpt3 2260 39357 37097 1 4857 12979 17204 4226
4 channel_277_read_0 39384 Rpt4 2260 39357 37097 10 4820 17207 21402 4196
4 channel_277_read_0 39384 Rpt5 2260 39357 37097 6 4153 21413 25055 3643
4 channel_277_read_0 39384 Rpt6 2260 39357 37097 1339 4791 26300 29571 3272
4 channel_277_read_0 39384 Rpt7 2260 39357 37097 1 4857 29594 33838 4245
4 channel_277_read_0 39384 Rpt8 2260 39357 37097 20 1174 33844 35077 1234
4 channel_277_read_0 39384 Downstream 2260 39357 37097 6 2668 34763 37096 2334
5 channel_433_read_0 39384 Upstream	   4141 40520 36379 4735 6617 2 1762 1761
5 channel_433_read_0 39384 Rpt1 4141 40520 36379 902 4858 1338 5174 3837
5 channel_433_read_0 39384 Rpt2 4141 40520 36379 1 4859 5180 9772 4593
5 channel_433_read_0 39384 Rpt3 4141 40520 36379 1 4857 9775 14300 4526
5 channel_433_read_0 39384 Rpt4 4141 40520 36379 1 4831 14302 18907 4606
5 channel_433_read_0 39384 Rpt5 4141 40520 36379 1 4859 18910 23573 4664

Supplementary	  Data	  1:	  MinION	  long	  read	  CT47-‐repeat	  characterization



Rd	  No. Read	  ID Total	  Read	  
Size

HMM	  Model	  
Prediction Trim	  Start Trim	  End

Span	  through	  CT47-‐
Rpts	  (+Upstream	  and	  
Downstream	  HMM	  

Models)

HMM	  
Model	  

Prediction	  
Start

HMM	  
Model	  

Prediction	  
End

Trim	  Read	  
Start

Trim	  Read	  
End

HMM	  Model	  
Prediction	  Base	  
Span	  Trim	  Read

5 channel_433_read_0 39384 Rpt6 4141 40520 36379 1 4859 23576 28138 4563
5 channel_433_read_0 39384 Rpt7 4141 40520 36379 1 4859 28141 32799 4659
5 channel_433_read_0 39384 Rpt8 4141 40520 36379 1 1169 32802 34173 1372
5 channel_433_read_0 39384 Downstream 4141 40520 36379 1 2713 33850 36378 2529
6 channel_456_read_11 50527 Upstream	   11 38532 38521 4719 6617 2 1873 1872
6 channel_456_read_11 50527 Rpt1 11 38532 38521 773 4816 1404 5536 4133
6 channel_456_read_11 50527 Rpt2 11 38532 38521 6 4858 5554 10471 4918
6 channel_456_read_11 50527 Rpt3 11 38532 38521 1 4823 10474 15298 4825
6 channel_456_read_11 50527 Rpt4 11 38532 38521 1 4859 15308 20151 4844
6 channel_456_read_11 50527 Rpt5 11 38532 38521 1 4857 20154 25000 4847
6 channel_456_read_11 50527 Rpt6 11 38532 38521 1 4848 25003 29828 4826
6 channel_456_read_11 50527 Rpt7 11 38532 38521 1 4859 29832 34684 4853
6 channel_456_read_11 50527 Rpt8 11 38532 38521 1 1170 34687 35915 1229
6 channel_456_read_11 50527 Downstream 11 38532 38521 7 2715 35770 38520 2751
7 channel_462_read_4 44672 Upstream	   68 42160 42092 36 6617 4 6441 6438
7 channel_462_read_4 44672 Rpt1 68 42160 42092 906 4859 6016 9979 3964
7 channel_462_read_4 44672 Rpt2 68 42160 42092 1 4859 9982 14850 4869
7 channel_462_read_4 44672 Rpt3 68 42160 42092 1 4859 14854 19640 4787
7 channel_462_read_4 44672 Rpt4 68 42160 42092 1 4829 19643 24262 4620
7 channel_462_read_4 44672 Rpt5 68 42160 42092 1 4859 24265 29004 4740
7 channel_462_read_4 44672 Rpt6 68 42160 42092 1 4848 29007 33739 4733
7 channel_462_read_4 44672 Rpt7 68 42160 42092 1 4859 33742 38422 4681
7 channel_462_read_4 44672 Rpt8 68 42160 42092 1 1170 38425 39801 1377
7 channel_462_read_4 44672 Downstream 68 42160 42092 2 2716 39461 42091 2631
8 channel_506_read_6 41355 Upstream	   2794 41323 38529 7 4901 1 4391 4391
8 channel_506_read_6 41355 Rpt1 2794 41323 38529 5320 6613 4550 5750 1201
8 channel_506_read_6 41355 Rpt2 2794 41323 38529 947 4857 5447 9025 3579
8 channel_506_read_6 41355 Rpt3 2794 41323 38529 7 4820 9026 13421 4396
8 channel_506_read_6 41355 Rpt4 2794 41323 38529 7 4857 13424 17838 4415
8 channel_506_read_6 41355 Rpt5 2794 41323 38529 1 4846 17840 22233 4394
8 channel_506_read_6 41355 Rpt6 2794 41323 38529 20 4851 22238 26739 4502
8 channel_506_read_6 41355 Rpt7 2794 41323 38529 4 4800 26740 31239 4500
8 channel_506_read_6 41355 Rpt8 2794 41323 38529 39 4809 31255 35589 4335
8 channel_506_read_6 41355 Downstream 2794 41323 38529 1 2156 36538 38510 1973
9 channel_94_read_4 43785 Upstream	   84 41266 41182 22 6617 5 6178 6174
9 channel_94_read_4 43785 Rpt1 84 41266 41182 828 4857 5746 9701 3956
9 channel_94_read_4 43785 Rpt2 84 41266 41182 2 4858 9706 14355 4650
9 channel_94_read_4 43785 Rpt3 84 41266 41182 1 4859 14357 18898 4542
9 channel_94_read_4 43785 Rpt4 84 41266 41182 1 4859 18901 23527 4627
9 channel_94_read_4 43785 Rpt5 84 41266 41182 11 4859 23530 28250 4721
9 channel_94_read_4 43785 Rpt6 84 41266 41182 2 4857 28253 32890 4638
9 channel_94_read_4 43785 Rpt7 84 41266 41182 6 4859 32896 37482 4587
9 channel_94_read_4 43785 Rpt8 84 41266 41182 16 1160 37487 38909 1423
9 channel_94_read_4 43785 Downstream 84 41266 41182 39 2709 38528 41180 2653



14 CT47 repeat copy number estimates by sheared BAC sequencing

To increase the MinION sequence throughput we sheared RP11-482A22 BAC DNA to an average frag-

ment length of 10 kb using g-TUBE (Covaris Cat. No. 520079). By alignment to the hg38 reference sequence

(hg38 chrX:120,814,747-121,061,920, omitting 50 kb scaffold gap), using BLASR Tuned (as described above)

we identified 2006 2D reads that mapped to the RP11-482A22 DNA. Base coverage was determined from

sorted alignment RP11-482A22 bam file using bedtools genomecov (bedtools genomecov -d -ibam map-

ping.sorted.bam)20. Coverage estimates were converted to a bed file with each row entry defining coverage

at a single base and base + 1, and then subdivided into bases that overlapped with the CT47 repeat region

and those that did not overlap with the repeats, labeled as flanking regions (bedtools intersect -woa and

-v, respectively)20. Histogram of base coverage was determined across all flanking bases, and determined to

have a mean coverage value of 46.2 bases. Base coverage estimates across the CT47 repeats were combined

represent a combined depth over a single 4.8 kb repeat unit (mean observed base coverage of 329.3). Normal-

ization of read depth for 8 copies of the repeat predicted an average read depth of 41 bases. The distribution

of normalized read depth was provided by dividing by 8 across all base positions of the repeat with combined

sequence depth.

15 Pulse-field gel electrophoresis validation of RP11-482A22 insert length

BAC insert length estimate of NotI-HF (NEB, cat R3189S) or AatII (NEB, cat R0117S) digested DNA ( 1

µg) was determined by pulse field gel electrophoresis (PFGE) using a CHEF-DRII system (BioRad). Length

estimates were determined using standard PFGE markers: Low-range (NEB, cat N0350S) and MidRange I

(NE551S). Samples were run for 15 hrs (gradient 6.0V/cm, in angle 120 degrees, switch time linear, with

initial ramping 0.2 seconds and finishing at 26 seconds) in 1% pulsed field certified agarose (BioRad) and

0.5x TBE at 4oC. Banding was identified using standard SYBR Gold (LifeTechnologies) staining.
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Fig. 22. Pulse-field gel electrophoresis of RP11-482A22 BAC DNA to determine insert length. Span of BAC
end sequences relative to GRCh38 reference assembly provides an estimate of 57 kb to the right of the repeats
and 76 kb to the left of the repeats (depicted in black). To determine the length of the repeats NotI and
AatII digests were performed on RP11-482 DNA. The NotI digest isolates the insert DNA in its entirety
from the cloning vector insert, pBACe3.6, providing evidence for a cloned insert in the range of 170-175 kb
band (blue) and a 11.6 kb cloning vector band (red). After subtracting the known flanking region sizes this
estimate provides a range of 36.7 - 41.7 kb repeat region, or 7.5-8.5 copies of the CT47 repeat. The AatII
digest was expected to cut the BAC three times, as illustrated in the schematic, providing three resulting
fragments: (a) 108 kb including the upstream flanking region (50kb), downstream flanking region (46 kb) and
the cloning vector insert (11.6 kb), shown in purple; (b) a 23 kb region directly downstream from the repeat
array (blue), and a region observed by PFGE to be ∼50 kb that spans the CT47 repeat cluster (providing
evidence for a 37 kb repeat region after subtracting 12 kb of known flanking sequence, marked with grey
shading). Regions providing evidence for repeat copy number are highlighted in yellow shading.
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